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Abstract The history of computations at Namur and

elsewhere on the electronic structures of stereoregular

polymers is briefly reviewed to place the work reported here

in the context of related efforts. Our earlier publications

described methods for the formal inclusion of Ewald-type

convergence acceleration in band-structure computations

based on Gaussian-type orbitals, and that work is here

extended to include a discussion of the calculation of total

energies. It is noted that the continuous nature of the elec-

tronic density leads to different functional forms than are

encountered for point-charge lattice sums. Examples are

provided to document the correctness and convergence

properties of the formulation.

Keywords Total energy � Stereoregular polymers �
Ewald method

1 Introduction

In the laboratories of the University of Namur, the authors

and their colleagues have a long history in the development

of methods for the study of one-dimensionally periodic

systems described quantum-mechanically at the Hartree-

Fock and correlation levels using expansions in Gaussian-

type atomic orbitals. This work, which was started under

the direction of Professor J. M. André, led to the creation of

the program known as PLH [1]. That program, designed for

the study of the structural and electronic properties of

linear polymers, evaluated the lattice sums as direct-space

expansions. Further work, directed by Professor J. Del-

halle, led to the development of an approach that combined

direct- and reciprocal-space concepts to yield an Ewald-

type method [2]. That work appeared in the Ph.D. disser-

tation of Flamant [3], in a paper that included the present

authors [4], and in later publications that are referred to

where appropriate in the present communication.

The past 20 years have seen a renewal of interest in

lattice summation methods, catalyzed by the advances in

high-performance computing and the ability thereby pro-

vided to approach molecular dynamics and condensed-

phase structural problems that had previously seemed

inaccessible. In this respect, an important development was

the so-called fast multipole method (FMM) [5]. With its

help, the electrostatic energies of arrays of charged parti-

cles can be evaluated in computing times that are nearly

linear in the number of particles. One of the strengths of

FMM is that the charge distribution need not be periodic,

and methods of Ewald character can be combined with

FMM concepts for studies of periodic systems [6].

While FMM has opened the door to greatly improved

efficiency in lattice sum evaluation, it may be useful to

observe that (unlike the Ewald procedure) it is not a
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fundamentally new algorithm. FMM is in our opinion

better viewed as an intelligently designed direct-space

approach wherein (1) the charges in various regions are

described in terms of a (truncated) set of their multipole

moments; (2) multipole moments from regions that are

sufficiently separated are used to compute energy contri-

butions; (3) the regions, their size, and their moment

truncation levels are chosen to optimize efficiency at a

specified level of accuracy, and (4) any short-range ener-

getic contributions that cannot be described accurately as

multipole interactions are computed exactly and explicitly.

The situation becomes more complicated when, instead

of point-charge arrays, one encounters continuous charge

distributions of known functional forms, as occurs when

orbitals are introduced to describe localized electron dis-

tributions in systems with periodicity in one or more

dimensions. It is possible to use FMM methods for such

systems, as was shown, for example, by Strain et al. [7].

However, in addition to the possibility of simply repre-

senting an orbital by its moments (and thereby foregoing

any processing based on its specific form), one may alter-

natively be able to use properties of the orbitals to make

further mathematical analyses that lead to gains in com-

putational efficiency. Such an approach is represented in

two efforts of which we are aware:

1. the periodic-system code CRYSTAL [8] manipulates

direct-space lattice sums involving Gaussian-type

orbitals (GTOs) in a way such that (at least for

systems with linear periodicity) they are represented

using the Euler-Maclaurin summation formula [9].

Although the Euler-Maclaurin formula is asymptotic

(i.e., formally not convergent), this approach leads to

highly satisfactory results in typical computations.

2. The work of our group (cited above), which makes

explicit use of the transformational properties of the

GTOs to obtain rapidly convergent analytical formulas

for all the lattice sums entering Hartree-Fock (HF) and

post-HF computations.

At this juncture, it is not clear which of the three cur-

rently identified approaches (FMM or those discussed in

the preceding paragraph) will be the most efficient for

various classes of problems. However, the present authors’

experience indicates that there are problems of practical

importance in which a full exploitation of the analytical

properties of the basis functions has been found advisable.

It therefore seems appropriate to encourage researchers to

proceed in accord with their individual interests.

The present communication, which deals with compu-

tations of the total energy in one-dimensionally periodic

systems, completes an exposition started in a recent paper

from our group [10], in which we developed Ewald-type

formulas for GTO-based band-structure computations in

stereoregular polymers. The work of our group showed

how the integrations in the nonperiodic directions can be

carried out analytically to yield exact closed formulas for

the terms in the remaining one-dimensional lattice sum-

mations. Although the Ewald transformation for GTOs

leads, for the direct-space part, to complementary error

functions (as also found for expansions involving point

charges), the reciprocal-space contribution was found to be

significantly different, being expressible in terms of a

family of incomplete Bessel functions [11] whose numer-

ical features had not previously been fully investigated.

Consequently, our research effort included not only the

formal aspects of the manipulation of the lattice summa-

tions to reach rapid convergence, but also the development

of methods for the numerical evaluation of the relevant

special functions. A satisfying aspect of the analysis is that

the use of a comprehensive formal development enables

the subsequent pursuit of whatever numerical methods

seem most appropriate, in contrast to a situation in which

the formal problem is solved via the introduction of a

specific numerical method that is then not easily modified.

Formulas for the total energy of course include the

nuclear–nuclear repulsion, which during the computation

must be offset by half the electron–nuclear attraction

energy to reach a finite, convergent result. This, in turn,

means that the formalism for the nuclear–nuclear term

must be developed in a way consistent with that for the

other energy contributions so that a proper divergence

cancelation is achieved. This problem was addressed for

spherically symmetric orbitals by Flamant [3], and the

present communication extends the analysis to orbitals of

general symmetry. Because our results are expressed in

terms of the first-order density matrix, they can be further

extended without essential modification to more general

GTO-based calculations that include electron correlation.

2 Total energy—basic formulas

We assume that the Hartree-Fock orbitals of our problem

have already been determined, based on a Fock matrix

Fab(k) whose subscripts a and b label Bloch states built

from basis GTO’s and whose argument k is a Bloch-wave

vector in units such that the Brillouin zone is of unit

length. Our methods for the calculation of Fab(k) and

related quantities were reported in detail in our previous

work [10].

Included in Fab(k) are Coulomb and exchange electron–

electron terms, as well as k-dependent electron–nuclear and

kinetic-energy matrices Vab(k) and Tab(k). We also note

that Fab(k), Vab(k), and Tab(k) are scaled such that the

corresponding overlap matrix element has the value Sab(k).

All these k-dependent quantities are assumed known.
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From the occupied Hartree-Fock orbitals, we can obtain

the first-order density matrix Pab(k), and the total energy

(per unit cell) then takes the form

ET ¼
1

2

Z1=2

�1=2

dk
X

ab

PbaðkÞ

� FabðkÞ þ TabðkÞ þ VabðkÞ þ n�1
e SabðkÞU

� �
; ð1Þ

where U is twice the nuclear–nuclear repulsion energy:

U ¼ 1

a0

X
AB

QAQBuðB� AÞ; ð2Þ

uðRÞ ¼
X1

m¼�1

0
1

jRþ mẑj : ð3Þ

Here, ne is the number of electrons per unit cell, and QA

and QB are nuclear charges at respective points A and B in

the unit cell, with positions expressed as fractions of the

cell dimension, which is a0. The unit vector ẑ is in the

direction of periodicity, and the prime on the m summation

indicates that the term m = 0 is to be omitted if A = B. The

factor ne
-1Sab(k) in Eq. (1) simply causes the summation

and integration of the U term of Eq. (1) to reduce to U. The

present placement of U facilitates the combined treatment

of Vab(k) ? ne
-1Sab(k) U.

The quantities Vab(k) and U are formally divergent, but

when Vab(k) is used in Fab(k), the divergence cancels against

a similar singularity in the electron–electron interaction.

When both these kinds of contributions are treated by an

Ewald procedure, the divergent contributions combine to

give a finite (but nonzero) result. In Eq. (1) here, we can use

for Vab(k) the same Ewald formulation as was used in our

previous work, but will need to use a compatible Ewald

formula for U and consider the limiting behavior of Vab(k) ?

ne
-1Sab(k) U. Since the only divergence in the Ewald formulas

is at the origin point of the Fourier-space sums, we may

evaluate all the terms of Vab(k) and the decomposition of U

individually except for the single divergent term of each and

then for the divergent terms take the limit of their sum.

3 Nuclear–nuclear term

A rather direct way of obtaining the Ewald decomposition

of the nuclear–nuclear lattice sum uses the error function,

defined as

erfðxÞ ¼ 2

p1=2

Zx

0

e�t2

dt; ð4Þ

and its complement erfc(x), defined as 1 - erf(x). At

x = 0, erf(x) = 0 and erfc(x) = 1, while at x ¼ 1;
erfðxÞ ¼ 1 and erfc(x) = 0. Thus, these functions

partition unity in a way dependent on the value of x. We

use these properties by writing

uðRÞ ¼
X1

m¼�1

0 erf
jRþmbzj

s1=2

� �
þ erfc

jRþmbzj
s1=2

� �

jRþ mbzj : ð5Þ

Here, s is a separation constant (not necessarily equal to

those used for Vab or the electron–electron terms). Larger

values of s make the erfc term of the partitioning (the

direct-space contribution) more important. Smaller values

of s cause emphasis on the erf term, which will be trans-

formed into Fourier space.

The erf term of Eq. (5) is now subjected to a Poisson

transformation, adding a contribution from m = 0 if it was

missing and then subtracting it again external to the

transformation. Before the Poisson transformation, this

term, which we call uFS(R), can be written as an integral:

uFSðRÞ ¼
2

ðpsÞ1=2

X1
m¼�1

Z1

0

e�jRþmẑj2t2=sdt � dR;0

2
4

3
5: ð6Þ

After the transformation, uFS becomes (temporarily

disregarding problems associated with the singularity

at l = 0)

uFSðRÞ ¼
X1

l¼�1
e2pilRz K0ðp2sl2; jR0j2=sÞ �

2dR;0

ðpsÞ1=2
: ð7Þ

In the right-hand side of Eq. (7) appear the component of R

in the direction of periodicity, denoted Rz, and the two-

dimensional remainder of R perpendicular to that direction,

denoted R0. Reaching Eq. (7) requires a number of steps,

but they are similar to those used for Vab and other lattice

sums in Ref. [10]. The function K0 is an incomplete Bessel

function that always occurs when a lattice of GTO’s

is subjected to a Poisson transformation, with integral

representation

K0ðx; yÞ ¼
Z1

1

e�xt�y=tdt: ð8Þ

A detailed account of this function was recently published

by one of the present authors [12], and methods for its

numerical evaluation were reviewed by both of us [13].

Turning now to the term of uFS with l = 0, which we

denote vnn, we identify its limiting behavior as l? 0, first

for the case R0 = 0. Using Eq. (C12) of Ref. [10], we find

vnn ¼ �2 ln l� lnðp2jR0j2Þ � 2cE � E1ðjR0j2=sÞ: ð9Þ

Here, cE is the Euler-Mascheroni constant, and E1 is an

exponential integral [14]. The quantity vnn contains the

only singular contribution to U; it diverges logarithmically

as l ? 0.
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Summarizing and simplifying,

U ¼ 1

a0

X
AB

QAQB

�
X
l 6¼0

e2pilðBz�AzÞK0ðp2sl2; jB0 � A0j2=sÞ þ vnn

"

þ
X1

m¼�1

0
erfcðs�1=2jB� Aþ mẑjÞ

jB� Aþ mẑj � 2dAB

ðpsÞ1=2

#
ð10Þ

4 Singularity cancellation

To see how the singularities cancel, we first note that the

only singular term of Vab(k) (from Ref. [10]) arises from

the l = 0 limit of its term with all the quantum numbers

n = l = m = 0. Thus, we write

VabðkÞ ¼ VabðkÞjnonsing �
SabðkÞ

a0

X
A

QAvneðAÞ; ð11Þ

where

vneðAÞ ¼ lim
l¼0

K0 p2ðgab þ sneÞl2;
jP0 � A0j2

gab þ sne

 !
: ð12Þ

Here, sne is the separation constant for Vab(k), gab =

1/(aa ? ab), where aa and ab are GTO screening parame-

ters, and P0 is the component perpendicular to ẑ of the

centroid of the GTO product ab, as given in Eq. (7) of Ref.

[10]. Note that vne also depends upon the orbitals a and b;

the notation for v becomes too cumbersome if that

dependence is shown explicitly.

Evaluating the limit in Eq. (12), we find

vneðAÞ ¼ �2 ln l� lnðp2jP0 � A0j2Þ � 2cE

� E1

jP0 � A0j2

gab þ sne

 !
: ð13Þ

The vne exhibit a logarithmic divergence as l ? 0 that

must cancel against the similar divergence in vnn.

Combining all the v terms, and inserting for those

coming from Vab(k) the quantity ne
-1P

B QB (which is

unity), the singularities and several finite contributions

cancel, and we have

VabðkÞ þ n�1
e SabðkÞU

� �
sing
¼ SabðkÞ

a0ne

X
AB

QAQB vnn � vneðAÞ½ �

¼ SabðkÞ
a0ne

X
AB

QAQB ln
jP0 � A0j2

jB0 � A0j2

 !"

þE1

jP0 � A0j2

gab þ sne

 !
� E1

jB0 � A0j2

s

 !#
: ð14Þ

Equation (14) requires further manipulation if any of the

quantities B0-A0 or P0-A0 vanish. In any such case, we

must replace the exponential integral by its small-argument

limit, which then causes cancellation of the corresponding

logarithm. The substitution involved corresponds to

E1

jRj2

s

 !
�! �cE þ ln s� ln jRj2; ð15Þ

and has the result that if the entire system is linear, Eq. (14)

reduces to

VabðkÞ þ n�1
e SabðkÞU

� �
sing
¼ neSabðkÞ

a0

ln
gab þ sne

s

� �
: ð16Þ

5 Convergence rates

The ultimate rate of convergence of the l and m summa-

tions in Eq. (10) is determined by the asymptotic behavior

of the functions erfc(x) and K0(x, y), and in particular, the

dominant contributions thereto at large x, which are

exponentially decaying:

erfcðxÞ� e�x2

f ðxÞ; K0ðx; yÞ� e�x�yf ðx; yÞ; ð17Þ

f(x) and f(x, y) are not important for the ultimate conver-

gence rate. From Eq. (17), we see that when s= 0, both the

summations converge at a quadratically exponential rate,

with their relative rates dominated (for l) by the decay of

expð�p2sl2Þ and (for m) by the decay of expð�s�1m2Þ.
Both these forms are in contrast to the slow and conditional

convergence obtained when terms of 1/l dependence (but

opposing signs) are summed.

The above analysis is consistent with our original

objective in partitioning the energy contributions: larger s
enhances the convergence rate of the Fourier-space sum

(that containing K0) while diminishing its importance to the

overall result. Smaller s enhances the convergence rate of

the direct-space sum (that containing erfc) while moving

energetic contributions to the Fourier representation.

The optimum overall summation extent (in the limit of

high accuracy) may now be obtained by requiring that both

summations converge at the same ultimate rate; this

objective is achieved by setting their exponential rates

equal when l = m, yielding

p2s ¼ s�1; ð18Þ

with solution s = 1/p & 0.32.

A similar analysis can be applied to the partitioning of

the energetic contributions of Vab. As indicated in Ref.

[10], the condition for equal direct- and Fourier-space

ultimate convergence rates reduces to

p2ðgab þ sneÞ ¼
1

gab þ sne

; ð19Þ

with solution sne = p-1 - gab. This result is meaningful

only if 0 \ gab \ p-1. If this condition is not met, the
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optimum value of sne is zero, corresponding to computation

entirely in Fourier space.

We close this section with two observations. First, the

number of summation terms is only a partial criterion for

maximizing computational efficiency. The relative effort of

evaluating individual terms of the two summations is also

relevant; current evaluation methods are faster for a direct-

space term than for a Fourier-space term, indicating that

Eqs. (18) and (19) are only starting points for highly tuned

evaluations.

Second, the ultimate convergence rate may not be rel-

evant if the accuracy we seek causes summation terms to

be deemed negligible before the limiting behavior is

reached. We observe this phenomenon in the examples to

follow.

6 Numerical tests

In order to demonstrate the correctness and the conver-

gence of this formulation, we now present illustrative

computations of that portion of the total energy that

includes the nuclear–nuclear repulsion and the offsetting

electron–nuclear attraction. This contribution to the total

energy arises from the last two terms within the square

brackets of Eq. (1) and contains the singular terms that

must cancel; we denote it Ene and observe that it has the

form

Ene ¼
1

2

Z1=2

�1=2

dk
X

ab

PbaðkÞ VabðkÞ þ n�1
e SabðkÞU

� �
: ð20Þ

Our test system consists of a linear chain of H2 molecules,

with a single 1s Gaussian orbital, of functional form

expð�ar2Þ; on each atom. We used two geometries, with

the first, designated H2k, consisting of molecules that are

aligned on the z-axis (the direction of translational peri-

odicity). The second geometry, designated H2\, consists of

molecules whose orientation is perpendicular to the z-axis.

All computations were made for a unit cell of length

a0 = 3.0 bohr and containing one H2 molecule with its

internuclear distance fixed at 1.42 bohr. For computational

simplicity, we used a density matrix with diagonal ele-

ments Ppp = Spp
-1 (p = a and b) and with off-diagonal

elements set to zero.

In the case H2k, the vectors R0, A0, and P0 (which

describe ‘‘projections’’ perpendicular to the direction of

periodicity) vanish for all choices of orbitals and nuclei.

This causes all the incomplete Bessel functions appearing

in the computations to reduce to exponential integrals, with

all the singular terms collapsing to the form given in

Eq. (16) of the present communication. A more compre-

hensive test is provided by the case H2\, because the

projection vectors do not vanish for a= b and A = B,

thereby providing a test for the general case of Eq. (14).

The first test we applied was to verify that our formulas

for Ene can give the same results as conventional ‘‘direct-

space’’ (DS) computations. Fixing the separation constant

s at the near-optimum value 0.3 and setting sne also to 0.3

(a value that will sometimes be far from optimal), we

computed Ene for several values of the GTO exponent

a, both by the method of the present communication and by

a conventional DS formula. The results are shown in

Table 1. Because of the wide range of the a values and the

non-optimal choice of sne some of the summations needed

for Table 1 converged extremely slowly. We arranged to

keep up to 1001 terms in the lattice summations, achieving

adequate convergence for all the table entries except for the

DS sums at a = 0.1. It is clear that the present and con-

ventional methods are in agreement.

We next considered issues related to the rate of con-

vergence of Ene, restricting attention to the single GTO

exponent a = 0.5 bohr-2. We carried out two sets of

computations; in the first set, summarized in Table 2, we

kept the electron–nuclear partitioning constant sne at 0.3

and varied the nuclear–nuclear constant s over a wide

range of values. The table reports the overall value of

Ene, which should be (and is) independent of the value of

s, and also indicates the numbers of terms N larger in

absolute value than 10-8 in the direct-space (DS) and

Fourier-space (FS) series for U appearing in Eq. (10). The

N values are expressed as ranges when they differ signifi-

cantly for different atom pairs. As expected, an increase in

s increases the importance of the direct-space summation

of U and reduces its convergence rate; the opposite trends

are noted for for the Fourier-space summation of U.

The table also includes the total number of significant

terms, NDS ? NFS; we see that it is a minimum in a broad

Table 1 Energies Ene, hartrees: this work (s = sne = 0.3) and by

conventional direct-space computation (DS), for various GTO expo-

nents a

a Ene Ene

bohr-2 (this work) (DS)

H2k 0.1 -0.003 139 -0.003 141

0.5 -1.080 911 -1.080 911

1.0 -1.591 596 -1.591 596

10.0 -5.046 265 -5.046 265

100.0 -15.957 691 -15.957 691

H2\ 0.1 -0.194 889 -0.194 890

0.5 -1.104 350 -1.104 350

1.0 -1.592 786 -1.592 786

10.0 -5.046 265 -5.046 265

100.0 -15.957 691 -15.957 691
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region centered about the theoretical value, 0.32. Finally,

we note that NFS has a wide range of values for H2\ at

small s. This behavior is caused by a combination of

extremely slow convergence and the fact that when A = B,

the large nonzero value of the second argument of the

Bessel function K0, namely |B0-A0|2/s, makes all the

summation terms smaller, see Eq. (17), and fewer of them

remain larger in magnitude than 10-8.

Our second set of test computations was with the

nuclear–nuclear separation constant s set to 0.3, with the

nuclear–electron constant sne varied. These studies are

summarized in Table 3, where we are studying the rates of

convergence of the series for Vab, given as Eqs. (53)–(55)

of Ref. [10]. Again, we verify that the overall value of Ene

is independent of the separation constants. We also see, as

expected, that the number of significant terms (greater in

absolute value than 10-8) in the direct-space series for Vab

increases with sne.

If we now look at the total number of significant terms

in the Vab expansions, we see that they do not indicate a

minimum at any intermediate value of sne. Because of the

presence of the quantity gab, which in this case is 1/2a = 1,

Eq. (19) does not predict an optimum positive value of

sne, and the best choice for this parameter is predicted to be

zero. The data in Table 3 are consistent with this predic-

tion: The table shows the total number of terms,

NDS ? NFS, to be a minimum at s = 0, indicating that the

optimum partitioning of Vab is entirely to Fourier space.

The data in Table 3 do not show the wild variation in

NFS that was exhibited by the expansion of U for H2\. The

difference in behavior is due to the fact that for Vab the

second argument of K0 depends upon (gab ? sne)
-1, and

not on s-1 as in the nuclear–nuclear contribution.

7 Conclusions

This paper completes the work presented in Ref. [10] by

showing how the Ewald technique can be applied to

compute the Hartree-Fock total energy for infinite systems

of one-dimensional periodicity in a basis of Gaussian-type

orbitals. A key aspect of the present contribution is the

method for combining correctly the singularities appearing

in the nuclear–nuclear and nuclear–electron interaction

terms. These singularities are a manifestation of the fact

that these two terms diverge if treated separately. The

correctness and adequacy of the approach are validated by

the presentation of sample computations.
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Table 3 Electrostatic energy Ene (hartrees) and the numbers of sig-

nificant terms in the direct-space and Fourier-space series appearing

in Eqs. (53)–(55) of Ref. [10] as a function of the separation constant

sne

sne Ene NDS NFS NDS ? NFS

H2k 0.0 -1.080 911 0 7 7

0.1 -1.080 911 5–7 5 10–12

0.3 -1.080 911 7–9 3 10–12

1.0 -1.080 911 11–13 3 14–16

2.0 -1.080 911 13–15 1 14–16

10.0 -1.080 911 25–27 1 26–28

100.0 -1.080 911 73–75 1 74–76

H2\ 0.0 -1.104 350 0 7 7

0.1 -1.104 350 7 5 12

0.3 -1.104 350 7–9 3 10–12

1.0 -1.104 350 11 3 14

2.0 -1.104 350 15 1 16

10.0 -1.104 350 27 1 28

100.0 -1.104 350 75 1 76
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